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Abstract 

We investigate higher integrals of motion in the k=l SU(2) Weas-Zumino- 
Witten(WZW) model perturbed by a certain relevant operator. While the 

perturbed system is a special case of a sine-Gordon theory, it is shown to the 

lowest order in perturbation theory that there exist extra conserved currents 

due to the SU(2) symmetry in the original WZW model. 
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In recent years, there has been much progress in two-dimensional conformal field 

theories(CFT’s) [1,2] in the context of studying string compactifications and also 

statistical models of critical phenomena. 

The critical points of statistical systems described by these conformal field theories 

correspond to the renormalization-group fixed-points in a larger set of Z-dimensional 

field theories. It has now become increasing interest to study 2-dimensional field 

theories away from critical points i.e. off-critical behavior of conformal field theories 

[3,4,5]. It is also suggested that integrable lattice models carry an infinite dimensional 

algebraic structure characteristic to CFT even away from critical points [6]. Since an 

infinite number of conserved quantities arc important to solve the theories exactly, 

there has been numerous works on the study of the conserved currents in the conformal 

field theories away from criticality by adding some relevant perturbations to the 

original theories (7,15,16,17]. Actually, it has been known that there exist higher 

integrals of motion in perturbed conformal field theories such as minimal models of 

CFT, W-algebras, and sine-Gordon system [8,9,10,11]. 

In ref.[lO], Sasaki and Yamanaka gave a general prescription for obtaining the 

higher integrals of motion in the quantum sine-Gordon system. Recently Eguchi and 

Yang [ll] have studied the deformation of the Virasoro minimum models by the (1,3) 

operator which leads to the sine-Gordon theory and clarified the connection between 

the result of ref.~ [lo] and those of Zamolodchikov’s [7,8,9]. They also argued that 

the perturbed CFT’s based on the coset construction arc described by the Toda field 

theory. 

In this paper we investigate SU(2) Wess-Zumino-Witten(WZW) model [12,13,14] 

with level k = 1 and therefore with the central charge c = 1 perturbed by a certain 

relevant operator. We will show that for a special value of the p in the sine-Gordon 

theory, we get more higher integrals of motion than obtained by Sasaki and Yamanaka 

[IO]. 
Let us consider SU(2) WZW model with k = 1 i.e. c = 1 case which is realized by 

a free boson 4 compactified on a circle of radius T [18,19]. The action for this system 

is given by 

S = &-d2zc3q5B~ (1) 
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where 4(z,z) = ;[qQ) + q(z)]. 

We now take T = l/&in which case there exists afline SU(Z)xSV(2) symmetry. 

The SU(2)x SU(2) generators in our convention are given in terms of q5 and 4 as: 

Jf( *) =: pw.) : J+(r) =: ,idG(~) : 

J-(z) =: ,-km.) : J-(z) =: ,-4&i) : 
(2) 

P(z) = $(*) P(z) = -4-@(E) 
d2 

where : : means the usual normal-ordered product. The operators J*, J3 satisfy the 

following operator algebras: 

J+(z)J-(w) - (* - w)-2 : ,mw-~m~) : 

- (* ‘,,2 + ;:I(:; 

P(%)J*(wJ) - ;*yy 

where we have used the following formula: 

(3) 

(4) 

Here we normalize the holomorphic scalar field 4 as: 

< +)c#(w) >= -h+ - w) , 

and we take a similar normalization for 4. 

We now add to the action of this theory a relevant perturbation term: 

A J qw,ti)d% . (6) 

In order to investigate higher-order integrals of motion we shall adopt the argu- 

ment by Zamolodchikov based on perturbation theory[7,8,9]. Correlation functions 

in the presence of perturbation are given by 

< X@(YI) . . . ‘p(y,) >,, d2yl . . d2y, (7) 
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with 2~ =< 1 >A. 

By taking X to be &A(z, j), in the lowest order of perturbation theory we get 

aEd = ~a,/d’w[A(r)H(w,ti)] (8) 

Let us now apply the operator product expansion: 

A(z)@(w,ti) = 2 (% - w)k(d@)k(w,ti) 
k=lA. 

(9) 

where we have introduced our notation for the product of two operators A and B as: 

AbIB = kz$Bb - w)k(ABh(w) 

with -GAB being the sum of conformal dimensions of A and B. 

By using the expression (9), equation (8) becomes 

(10) 

&A = &[/di----(. - W)-*(d’+&qti)] 
k=1 

Noting that 

we get 

a,(% - w)-k = (Ic : l)!ak-%(* - w) 

where 

a,A = X(AQ)-1 + Xa,B 

01) 

(12) 

(-l)k-‘a=k-z(d~)-k(I,E) . 

Therefore, if (A@)-1 is a total derivative of the form 8X’ then A is a conserved 

charge desity(current): 

a,A= ,ia.x , (13) 

with X = X’ + B, since its integral gives a conserved charge(integral of motion): 

,-$jdzA(z,I) = 0 (14) 
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For a perturbation term 

ip = &V,iPb + ,-iP&,-iPd 
(15) 

the lowest-order perturbative calculation leads to the sine-Gordon equation[ll]: 

%I$ = 7 sinPf$ (16) 

with y being some appropriate constant. 

Now we choose the relevant perturbation for the SU(2) WZW model as follows: 

$I = .pl~,irnl~ + ,-io/Ji,-i&h (17) 

This corresponds to the case p = l/d. @ given by (17) has the conformal weight 

(t, i) and it is a conformal field which is invariant under the 2s transformation:4 ,J -+ 

-4, -4. This theory is a perturbed k=l SU(2) WZW model and also a special case 

of a quantum sine-Gordon theory[lO,ll]. In the k=l case, the primary fields are 
i Oh) onlylandez , and hence the operator product can be written in terms of the 

descendants of those primary fields[20]. 

As discussed in ref.[lO], this system has an infinite number of conserved quantities. 

But, in our particular case there exist much more conserved quantities than in the 

general case. For conformal weight 4 we have obtained 5 conserved currents, one of 

which coincides with the weight 4 conserved current found in the general case [lO,ll]. 

Before going to the study of the higher integrals of motion, let us note the following 

‘Leibniz’ rule which turns out to be very useful: 

((AB)kC)i = (A(BC)i)k + (-l)k(B(dc)-,),+,+, (18) 

This can be easily shown by using the following relation: 

((AB)kC)r(z) = j+dj(d~(z -~)k+lA(r)B(y)](y $+I~(“) 

(z -;,*+I (y -‘,,l 42) F (Y - z)k(BC)k(Z-) 
k=IBo 

(= $+I (y -‘,,,+I B(Y) F (2 - z)k(AC)k(Z) 09) 
k=lAc 
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Now we will show there exist higher integrals of motion in our perturbed theory. 

we have obtained following 5 conserved charge densities with the conformal weight 
4: 

J!++) = (J+J+)Z = ((J+J+))Z 

J(+) = -2[(J+J”)z + (J”J+)l] = -4((J+J3))1 4 

Jp’ = -2[(J+J-)z + (J-J+)2 - 4(J3J3)2] = -4[((J+J-))2 - 2((J3J3)),] (20) 

Ji-) = -2[(J-J”)z + (J3J-),I = -4((J-J3))2 

Ji--’ = (J-J-)2 = ((J- J-))2 

where we have introduced the symmetrized product 

((AB))k = ;[(dB)k + (Bd)k] . 

In terms of the field 4, these conserved currents turn out to be 

Jp)(r) =: [(&++)’ - +$)’ - ;(,%)(a’d)](z) : (21) 

Ji-‘(z) =: [ i =a3b - (a$)(a’q5) - ~(aqS)‘](z) : ewiG++) : 

J,(--I(*) =: ,4&(.) : 

For example, the expression for J!++)(z) is obtained from 

: &h(z) :: ,idT&(w) :%, (= _ w)2 : ,k3w+iJ5Nw) : (22) 

First of all, let us show that Ji++) =: eizA+ : ’ is a conserved current under pertur- 

bation. 
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Since 

: ,-w : qw, w) 

= (2 :,,a : ,$+u) :: ,-jiK-9 : + l &4~,4(,) : ,++),-~6(“) : (z-w) (23) 

we have 

(Ji++)@)-, = :a( ei%‘,-$i6) (24) 

and therefore Ji++) is a conserved current. Possible another proof for conservation of 
Jj++) ’ is to show that @(J+J+))z is proportional to a total derivative by taking into 

account the conformal weight of ((J+ J+)) 1 and the dimension of the coupling constant 

X following the Zamolodchikov’s argument [?,8,9]. Conservation of the remaining 

currents can now be easily seen by noting the folIowing expressions 

Ji++) = (J+J+)2 , JI”’ = (J-(J+J+)& 

J!“) = (J-(J-(J+J+)l)-l)-l = (J+(J+(J-J-)2)-l)-l (25) 

J,-’ = (J+(J-J-)&l , J(++) = (J-J-) 1 2 

and using the Leibniz rule. The conservation can be demonstrated by explicit calcu- 

lation using the boson representation. But more general arguement goes as follows. 

If X is a conserved current or equivalently if (Xip)-, is a total derivative, then 

(J-X)-, is also another conserved current. This can be seen in the following way. 

By using the Leibnis rule (18) for k = I = -1 we have 

((J-X)-1@)-, = (J-(X@)-& - (X(J-a)-&, (26) 

Noting that in general (ABB)-I is a total derivative, the first term of (26) becomes a 

totsl derivative. And also we note 

‘d (J-@)-1 =: e-3 
‘,$ 

e3 : (27) 

Since (X+)-r is a total derivative, (X=*5’“)-1 are also total derivatives. Therefore 

the second term turns out to be a total derivative. Hence eq.(26) is also a total 

derivative, which implies that (J-X)- t is a conserved current. From this argument, 
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starting from Ji++), we can show the conservation of Ji” and Jp’. In a similar 

manner, Jim’ and Ji--’ are seen to be conserved currents. 

What is remarkable here is that the conserved quantities (20) form a SU(2) mul- 

tiplet. This is supposed to be due to a remnant of SU(2) symmetry existing in the 

unperturbed system. 

In refs.[lO,ll], the energy-momentum tensor contains a Feigin-Fuchs linear term 

34 in order to connect the sine-Gordon theory with the minimal theories for which 

c < 1. Their energy- momentum tensor which we denote by F is related to our 

T = -; : (a# : as 

345 
f+ = T + ;8J3 = -; : (a~#,)~ : +iq@4 

The weight 4 conserved quantity in the sine-Gordon theory is calculated to be 

y4 = (pj), =: -;(a%$)’ + gvl’ : 

up to total derivatives. This coincides with the $): J3 = 0 component of our weight 

4 multiplet up to an overall factor and total derivatives. The conserved charges ob- 

tained from ~~ and Jp’ are the same up to an overall constant factor. The conserved 

quantities obtained in refs.[lO,ll] are all expressed by T and J3 in our notation. Al- 

though we only investigated the case of weight 4, we expect that for higher conformal 

weights these quantities form SU(2) multiplets as well. Thus it is conjectured that 

there exist an infinite number of conserved quantities which contain the conserved 

charges of ref.[lO] as a subset. 

Now some comments are in order. It would be interesting to extend the present 

analysis to general simply-laced algebras as Eguchi and Yang studied in the case of 

sine-Gordon theory. Secondly, although we only studied the k = 1 case in this paper, 

it should be explored for higher levels. In particular, the k = 2 case is described by 

three fermionsj201 , and the explicit computation might be carried out. Although 

our analysis is still at preliminary stage, it would be intriguing to study the possible 

connection of the extra conserved charges with spectrum structure of sine-Gordon 

theory. Finally, the present analysis is totally based on the lowest-order perturbation 

theory. Therefore it is extremely important to see how the present result will be 

affected by possible higher-order corrections. 
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